Approximating the largest eigenvalue of network adjacency matrices
نویسندگان
چکیده
منابع مشابه
Approximating the largest eigenvalue of network adjacency matrices.
The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equilibria of network coupled systems). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations....
متن کاملApproximating the Largest Eigenvalue via Powering and the Lanczos method
Notation: λ1(A) = largest eigenvalue of A. Motivation: The largest eigenvalue tells us the spectrum of a matrix and thus can be somewhat useful. More crucially for the adjacency matrix of a graph, we know exactly that the all one’s vector is the largest eigenvector, and thus by working orthogonal to this vector we can approximate the second largest eigenvalue of the graph, which tells us how we...
متن کاملOn the largest-eigenvalue process for generalized Wishart random matrices
Using a change-of-measure argument, we prove an equality in law between the process of largest eigenvalues in a generalized Wishart random-matrix process and a last-passage percolation process. This equality in law was conjectured by Borodin and Péché (2008).
متن کاملCharacterizing and approximating eigenvalue sets of symmetric interval matrices
We consider the eigenvalue problem for the case where the input matrix is symmetric and its entries perturb in some given intervals. We present a characterization of some of the exact boundary points, which allows us to introduce an inner approximation algorithm, that in many case estimates exact bounds. To our knowledge, this is the first algorithm that is able to guarantee exactness. We illus...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2007
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.76.056119